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What do words mean?

* N-gram or text classification methods we've seen so far
o Words are just strings (or indices w; in a vocabulary list)

o That's not very satisfactory!

Introductory logic classes:
o The meaning of "dog" is DOG; cat is CAT
Vx DOG(x) — MAMMAL(x)

Old linguistics joke by Barbara Partee in 1967:

o Q: What's the meaning of life?
o A:LIFE

That seems hardly better!
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Desiderata
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* What should a theory of word meaning do for us?
* Let's look at some desiderata

* From lexical semantics, the linguistic study of word meaning
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Lemmas and senses

lemma

/
mouse (N)

__~1. any of numerous small rodents...
— 2. a hand-operated device that controls
a CUrsofr...

sense

Modified from the online thesaurus WordNet

A sense or “concept” is the meaning component of a word
; Lemmas can be polysemous (have multiple senses)



Relations between senses: Synonymy

* Synonyms have the same meaning in some or all contexts.
o filbert / hazelnut

o couch / sofa
obig/large
oautomobile / car
ovomit [ throw up

owater/H.,o0

DEAKIN

UNIVERSITY




Relations between senses: Synonymy 5
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* Note that there are probably no examples of perfect

synonymy.
o Even if many aspects of meaning are identical

o Still may differ based on politeness, slang, register, genre, etc.



Relation: Synonymy?
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water/H,o0
"H,0" in a surfing guide?
big/large

my big sister = my large sister
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The Linguistic Principle of Contrast
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» Difference in form = difference in meaning



Abbeé Gabriel Girard 1718

Re: "exact" synonyms

J¢ ne crois pas qu'il y altde-
mor fynonimc dans aucune
Langue Je le dis par con-

[l do not believe that there

IS @ synonymous word in any
language]
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Relation: Similarity

Words with similar meanings. Not synonyms, but sharing some

element of meaning

car, bicycle

cow, horse
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Ask humans how similar 2 words are
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vanish

disappear

behave  obey

belief

Impression

muscle bone
modest flexible

hole

agreement

wordl ___word2 ______similarity ____

9.8
(.3
5.95
3.65
0.98
0.3

SimLex-999 dataset (Hill et al., 2015)
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Relation: Word relatedness

* Also called "word association"

* Words can be related in any way, perhaps via a semantic frame or
field

ocoffee, tea: similar
ocoffee, cup: related, notsimilar
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Semantic field
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* Words that

o cover a particular semantic domain

o bear structured relations with each other.

hospitals

surgeon, scalpel, nurse, anaesthetic, hospital
restaurants

waiter, menu, plate, food, menu, chef
houses

door, roof, kitchen, family, bed

14
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Relation: Antonymy

* Senses that are opposites with respect to only one feature of meaning
* Otherwise, they are very similar!
dark/light short/long fast/slowrise/fall
hot/cold up/down in/out

* More formally: antonyms can
o define a binary opposition or be at opposite ends of a scale

O long/short, fast/slow

o Be reversives:

O rise/fall, up/down



Connotation (sentiment)
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*  Words have affective meanings
* Positive connotations (happy)
* Negative connotations (sad)
* Connotations can be subtle:
* Positive connotation: copy, replica, reproduction
* Negative connotation: fake, knockoff, forgery
* Evaluation (sentiment!)

*  Positive evaluation (great, love)

* Negative evaluation (terrible, hate)
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Connotation

Osgood et al. (1957)
* Words seem to vary along 3 affective dimensions:

o valence: the pleasantness of the stimulus
o arousal: the intensity of emotion provoked by the stimulus

o dominance: the degree of control exerted by the stimulus

Valence love 1.000 toxic 0.008
happy 1.000 nightmare 0.005
Arousal elated 0.960 mellow 0.069
frenzy 0.965 napping 0.046
Dominance powerful 0.991 weak 0.045
leadership 0.983 empty 0.081

17
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* Concepts or word senses

o Have a complex many-to-many association with words (homonymy, multiple senses)

* Have relations with each other
o Synonymy
o Antonymy
o Similarity
o Relatedness

o Connotation
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Computational models of word meaning

 Can we build a theory of how to represent word meaning, that accounts for
at least some of the desiderata?

 We'll introduce vector semantics

o The standard model in language processing!

o Handles many of our goals!

20
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Ludwig Wittgenstein
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*P| #43:

"The meaning of a word is its use in the language"
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Let's define words by their usages
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* One way to define "usage":

. words are defined by their environments (the words around them)

* Zellig Harris (1954):

If A and B have almost identical environments we say that they are

synonyms.

22



DEAKIN

UNIVERSITY

What does recent English borrowing ongchoi mean?

* Suppose you see these sentences:
o Ongchoi is delicious sautéed with garlic.
o Ong choi is superb over rice
o Ong choileaves with salty sauces

* And you've also seen these:

o ...spinach sautéed with garlic over rice
o Chard stems and leaves are delicious

o Collard greens and other salty leafy greens

* Conclusion:
o Ongchoiis a leafy green like spinach, chard, or collard greens

o We could conclude this based on words like "leaves" and "delicious" and "sauteed"

23
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Ongchoi: Ipomoea aquatica "Water Spinach"
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kangkong

rau muong
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Idea 1: Defining meaning by linguistic distribution
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* Let's define the meaning of a word by its distribution in language use,

meaning its neighboring words or grammatical environments.

25
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Idea 2: Meaning as a point in space (Osgood et al. 1957)

3 affective dimensions for a word
o valence: pleasantness
o arousal: intensity of emotion

o dominance: the degree of control exerted

Valence love 1.000 toxic 0.008
happy 1.000 nightmare 0.005
Arousal elated 0.960 mellow 0.069
frenzy 0.965 napping 0.046 NRC VAD Lexicon
Dominance powerful 0.991 weak 0.045 (Mohammad 2018)
leadership 0.983 empty 0.081

O

* Hence the connotation of a word is a vector in 3-space

26

Deakin University CRICOS Provider Code: 00113B



DEAKIN

UNIVERSITY

ldea 1: Defining meaning by linguistic distribution

ldea 2: Meaning as a point in multidimensional space
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Defining meaning as a point in space based on distribution

* Each word = avector (not just "good" or"w,.")
* Similar words are "nearby in semantic space”

* We build this space automatically by seeing which words are nearby in text

not good
bad
© LY . dislike worst
incredibly bad
that now e Worse
a | you
than with is
very good incredibly good
amazing fantastic
terrific nice wonderful

28
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We define meaning of a word as a vector A
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* Called an "embedding" because it's embedded into a space (see
textbook)
* The standard way to represent meaning in NLP
. Every modern NLP algorithm uses embeddings as the
representation of word meaning

* Fine-grained model of meaning for similarity

29
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Intuition: why vectors?

* Consider sentiment analysis:

o With words, afeatureis a word identity

O Feature 5: 'The previous word was "terrible

O requires exact same word to be in training and test

o With embeddings:
o Feature is a word vector
O 'The previous word was vector [35,22,17...]
o Now in the test set we might see a similar vector [34,21,14]
O We can generalize to similar but unseen words!!!

30
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We'll discuss 2 kinds of embeddings
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o tf-idf
o Information Retrieval workhorse!
o A common baseline model
o Sparse vectors

o Words are represented by (a simple function of) the counts of nearby words

* Word2vec
o Dense vectors
o Representation is created by training a classifier to predict whether a word is likely to appear
nearby

o Later we'll discuss extensions called contextual embeddings

31
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From now on: Computing with meaning representations
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instead of string representations

ZEIERS, B8NS E Nets are for fish;
Once you get the fish, you can forget the net.
SEMLUAEER, BEMEE Words are for meaning;
Once you get the meaning, you can forget the words
H-—F(Zhuangzi), Chapter 26
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Bag of Words

* A document is represented as vector of words.
o One dimension per word.
o Vector size is the vocabulary size, e.g., English may contain 100k words.
o Different weighting schemas can be used, e.q., tf, log(tf), tf-idf, Boolean, etc.

o Sparse vector, e.g., almost all values are zeros.

As You Like It Twelfth Night Julius Caesar Henry V

battle 1 0 7 13
good 14 80 62 89
fool 36 58 1 4
wit 0 15 2 3
34
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Order matters for NLP tasks!
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* Assumes independence between words:
o The sentences "John likes Mary” has the same representation as "Mary likes John” —
even though the semantic is different).
* May work well for Information Retrieval tasks, but not for NLP tasks!

o Sentiment analysis:

"Ah no, there are good movies on Netflix!” vs. "Ah, there are no good movies on Netflix!”

35
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Computing word similarity: Dot product and cosine
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* The dot product between two vectors is a scalar:

N

dot product(v,w) =v-w = Zviwi — VIW] +Vows + ... + VNWN
i=1

* The dot product tends to be high when the two vectors have large values in

the same dimensions

* Dot product can thus be a useful similarity metric between vectors
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Problem with raw dot-product

Dot product favors long vectors

Dot product is higher if a vector is longer (has higher values in many dimension)

Vector length:

N
v = > 2
\'S

* Frequent words (of, the, you) have long vectors (since they occur many times with

other words).

So dot product overly favors frequent words

37



A
DEAKIN

UNIVERSITY

Alternative: cosine for computing word similarity

. SN V-w =1
cosine(V,w) = —— =
V| N
Sty S
\ i=1 \ i=1

Based on the definition of the dot product between two vectors aand b

a-b = |a]|b|cos
a-b
38 ’aHb|
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Bag of Words

* A document is represented as vector of words.
o One dimension per word.
o Vector size is the vocabulary size, e.g., English may contain 100k words.
o Different weighting schemas can be used, e.q., tf, log(tf), tf-idf, Boolean, etc.

o Sparse vector, e.g., almost all values are zeros.

As You Like It Twelfth Night Julius Caesar Henry V

battle 1 0 7 13
good 14 80 62 89
fool 36 58 1 4
wit 0 15 2 3
40
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Order matters for NLP tasks!
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* Assumes independence between words:
o The sentences "John likes Mary” has the same representation as "Mary likes John” —
even though the semantic is different).
* May work well for Information Retrieval tasks, but not for NLP tasks!

o Sentiment analysis:

"Ah no, there are good movies on Netflix!” vs. "Ah, there are no good movies on Netflix!”

41
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Computing word similarity: Dot product and cosine

DEAKIN

UNIVERSITY

* The dot product between two vectors is a scalar:

N

dot product(v,w) =v-w = Zviwi — VIW] +Vows + ... + VNWN
i=1

* The dot product tends to be high when the two vectors have large values in

the same dimensions

* Dot product can thus be a useful similarity metric between vectors
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Problem with raw dot-product

Dot product favors long vectors

Dot product is higher if a vector is longer (has higher values in many dimension)

Vector length:

N
v = > 2
\'S

* Frequent words (of, the, you) have long vectors (since they occur many times with

other words).

So dot product overly favors frequent words
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Alternative: cosine for computing word similarity

. SN V-w =1
cosine(V,w) = —— =
V| N
Sty S
\ i=1 \ i=1

Based on the definition of the dot product between two vectors aand b

a-b = |a]|b|cos
a-b
” a|[b]
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Sparse versus dense vectors
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* tf-idf (or PMI) vectors are

olong (length |V|= 20,000 to 50,000)
osparse (most elements are zero)
* Alternative: learn vectors which are

oshort (length 50-1000)

odense (most elements are non-zero)

45



A
DEAKIN

UNIVERSITY

Sparse versus dense vectors

* Why dense vectors?

o Short vectors may be easier to use as features in machine learning (fewer weights to tune)
o Dense vectors may generalize better than explicit counts

o Dense vectors may do better at capturing synonymy:

ocar and automobile are synonyms; but are distinct dimensions
*a word with car as a neighbor and a word with automobile as a neighbor

should be similar, but aren't
o In practice, they work better

46
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Common methods for getting short dense vectors

* "Neural Language Model”-inspired models
o Wordavec (skipgram, CBOW), GloVe

* SingularValue Decomposition (SVD)
o A special case of this is called LSA — Latent Semantic Analysis

* Alternative to these "static embeddings":
* Contextual Embeddings (ELMo, BERT)

*  Compute distinct embeddings for a word in its context

* Separate embeddings for each token of a word

47
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Simple static embeddings you can download!
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* Word2avec (Mikolov et al)

* https://code.google.com/archive/p/word2vec/

* GloVe (Pennington, Socher, Manning)

* http://nlp.stanford.edu/projects/glove/

48


https://code.google.com/archive/p/word2vec/
http://nlp.stanford.edu/projects/glove/

Word2vec

49

Popular embedding method
Very fast to train

Code available on the web
Idea: predict rather than count

Word2vec provides various options. We'll do:

skip-gram with negative sampling (SGNS)
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Word2Vec

* Instead of counting how often each word w occurs near "apricot"
o Train a classifier on a binary prediction task:

O Is w likely to show up near "apricot'"?
* We don’t actually care about this task

o But we'll take the learned classifier weights as the word embeddings
* Bigidea: self-supervision:

o A word c that occurs near apricot in the corpus cats as the gold "correct answer" for

supervised learning

o No need for human labels

o Bengio etal. (2003); Collobert et al. (2011)

5o
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Approach: predict if candidate word cis a "neighbor"
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1. Treatthe target word t and a neighboring context word c as positive
examples.

2. Randomly sample other words in the lexicon to get negative examples

3. Use logistic regression to train a classifier to distinguish those two cases

4. Use the learned weights as the embeddings

51



Skip-Gram Training Data
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* (assuming a +/- 2 word window)

...lemon, a [tablespoon of apricot jam, a] pinch...
cl c2 [target] ¢c3 c4
* Goal: train a classifier that is given a candidate (word, context) pair
(apricot, jam)

(apricot, aardvark)

* And assigns each pair a probability:
o P(+|w, ¢)
o P(-|w, c)=1-P(+|w, )

52
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Similarity is computed from dot product A
DEAKIN

UNIVERSITY

* Remember: two vectors are similar if they have a high dot

product

o Cosineis just a normalized dot product

* So:
oSimilarity(w,c) cw- c

* We'll need to normalize to get a probability
o(cosine isn't a probability either)

53



Turning dot products into probabilities A
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* SIm(w,c) =W - ¢

* To turn this into a probability

* We'll use the sigmoid from logistic regression:

P(—|—‘W,C) — G(C'W): 1_|_eXp1(—C°W)
P(=w,c) = 1-P(+|wc)
1
— G(_C°W):

1+exp(c-w)

54
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How Skip-Gram Classifier computes P(+|w, c)

1
- 14exp(—c-w)

P(+|w,c) = o(c-w)

* This is for one context word, but we have lots of context words.

* We'll assume independence and just multiply them:

P(+|w,c1.) = H o(ci-w)
i=1

log P(+|w,c1.)

L
Zlog o(ci-w)
i=1

55



Skip-gram classifier: summary

* A probabilistic classifier, given

* atesttarget word w

* its context window of L words ¢,

* Estimates probability that w occurs in this window based on similarity of w

(embeddings) to C,.; (embeddings).

* To compute this, we just need embeddings for all the words.

56
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Skip-Gram Training data

...lemon, a [tablespoon of apricot jam, a] pinch...
c1 c2 [target] c3 ¢4

positive examples +
t C

apricot tablespoon
apricot of

apricot jam
apricot a

58
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Skip-Gram Training data

...lemon, a [tablespoon of apricot jam, a] pinch...

c1 c2 [target] c3 ¢4

positive examples +

t C

apricot tablespoon For each positive
apricot of example we'll grab k
apricot jam negative examples,

apricot a sampling by frequency

59
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Skip-Gram Training data A
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...lemon, a [tablespoon of apricot jam, a] pinch...

c1 c2 [target] c3 ¢4
positive examples + negative examples -
t C t C t C
apricot tablespoon apricot aardvark apricot seven
apricot of apricot my apricot forever
apricot jam apricot where  apricot dear
apricot a apricot coaxial apricot if

60



Word2vec: how to learn vectors

DEAKIN

UNIVERSITY

* Given the set of positive and negative training instances, and an
initial set of embedding vectors

* The goal of learning is to adjust those word vectors such that we:

o Maximize the similarity of the target word, context word pairs (w, ¢,,5) drawn from the

positive data

o Minimize the similarity of the (w, c,4) pairs drawn from the negative data.
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Loss function for one w with c

C C

pos I ~neg1 """“negk

* Maximize the similarity of the target with the actual context words, and minimize the

similarity of the target with the k negative sampled non-neighbor words.

k
Lcg = —log P(+|w,cp0S)HP(|w,cnegi)}
i=1

- k
= — lOgP(‘|—|W,Cp0S)+Zlogp(_|w7cnegi):|
i i=1

B k
= — 10gP(+|W7 Cpos) +Zlog (1 _P(_I_‘W? C”egi)):|
i i=1

i k
62 = - IOgG(CPOS'W)‘|‘Zlog6(_cnegi'W)}
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Learning the classifier

* How to learn?

o Stochastic gradient descent!

» We'll adjust the word weights to
o make the positive pairs more likely

o and the negative pairs less likely,

o over the entire training set.
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Intuition of one step of gradient descent
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[ aardvark [eee
move apricot and jam closer,
apricot [@eew |~ — = Increasingc . * w
. N
W - A \
Y “ |
oy | @ . . ”
SR ...apricot jam...
\  zebra [ee® AR
H dvark ([eee “ E
( daardvar L/ i ', move apricot and matrix apart
. ' . ' - W
jam [essic, . I, ‘ ’ decreasing C, .
- o © _.r -
C { k—2 matrlx @ Cneg1 < ’l
Tolstoy [€89] C o po|w- - - MOVE apr/cotland Tolstoy apart
decreasing ¢, * W
64 K zebra [eee
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Reminder: gradient descent
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At each step

Direction: We move in the reverse direction from the gradient of the loss function

Magnitude: we move the value of this gradient%L(f(x; w),y) weighted by a

learning rate n

Higher learning rate means move w faster

+1_ 4 d .
W= w deL(f(x,w),y)



The derivatives of the loss function

66

LcE

dLcE

JCpos
dLck

dLcE

dw

log 6(cpos - W) + Z log o (—Cpeq. - W)

k _

i=1 i

G (Cpos-w) — 1w

0 (Creg - w)|w




Update equation in SGD
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e Start with randomly initialized C and W matrices, then incrementally do

updates
t+1 ot '
Cpos — Cpos — N
+1 -
Cneg — Cneg — N
t+1 ¢
W = w —1




Two sets of embeddings
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* SGNS learns two sets of embeddings
o Target embeddings matrix W

o Context embedding matrix C

* It's common to just add them together, representing word i as the vector w;

+C,
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Summary: How to learn word2vec (skip-gram) embeddings

* Start withV random d-dimensional vectors as initial embeddings

* Train a classifier based on embedding similarity
oTake a corpus and take pairs of words that co-occur as positive examples
oTake pairs of words that don't co-occur as negative examples
oTrain the classifier to distinguish these by slowly adjusting all the embeddings to
improve the classifier performance

oThrow away the classifier code and keep the embeddings.

69

Deakin University CRICOS Provider Code: 00113B



70




Word Embedding vs. Bag of Words
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Traditional Method - Bag of Words Model

Word Embeddings

Two approaches:

= Either uses one hot encoding.

= Eachword in the vocabulary is represented by one bit position
ina HUGE vector.

= For example, if we have avocabulary of 10,000 words, and
“aardvark” is the 4th word in the dictionary, it would be
representedby:[000100....... 0 00].

= Oruses document representation.

= Eachword in the vocabulary is represented by its presence in
documents.

= For example, if we have a corpus of 1M documents, and “Hello”
isin ath, 3th and 5th documents only, it would be represented
by:[101010....... 0 00].

= Assumes independence between words.

71

= Stores each word in as a point in space, where it is
represented by a dense vector of fixed number of
dimensions (generally 300) .

= For example, "Hello” might be represented as: [0.4, -0.11, 0.55,
0.3...0.1, 0.02].

= Dimensions are projections along different axes, more of a
mathematical concept.

= Unsupervised, built just by reading huge corpus.

= Assumes dependence between words.
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Word Embedding vs. Bag of Words
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Traditional Method - Bag of Words Model

Word Embeddings

= Requires very large weight matrix for 1% layers.
-
10,000 words @ — @ 100units
o — @
W'’s size is 10,000x100 = 10°
= Models not flexible with unseen words in the

training
LM

He is a cu%cor

72

= A compact weight matrix for 1% layers.
S o
d300 @ — ® 100 units
o —— @
W’s size is 300x100 = 3x10*
= Flexible models with unseen words in the training

set.
"EE R

He is a cultivator
NS

farmer
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The kinds of neighbors depend on window size

*Small windows (C= +/- 2) : nearest words are syntactically similar words in same

taxonomy

o Hogwarts nearest neighbors are other fictional schools

o Sunnydale, Evernight, Blandings

‘Large windows (C= +/- 5) : nearest words are related words in same semantic field

o Hogwarts nearest neighbors are Harry Potter world:

o Dumbledore, half-blood, Malfoy

74



Analogical relations

* The classic parallelogram model of analogical reasoning (Rumelhart and

Abrahamson 1973)
 To solve: "apple is to tree as grape is to "
* Add tree — apple to grape to get vine tree
O
apple
S
[ vine
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Analogical relations via parallelogram
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* The parallelogram method can solve analogies with both sparse and dense
embeddings (Turney and Littman 2005, Mikolov et al. 2013b)

. king—man + woman is close to queen

. Paris — France + Italy is close to Rome

* Fora problem a:a*::b:b*, the parallelogram method is:

b* = argmax distance(x,a* —a+b)
X
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Caveats with the parallelogram method
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* It only seems to work for frequent words, small distances and certain
relations (relating countries to capitals, or parts of speech), but not others.

(Linzen 2016, Gladkova et al. 2016, Ethayarajh et al. 2019a)

» Understanding analogy is an open area of research (Peterson et al. 2020)



Embeddings as a window onto historical semantics
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* Train embeddings on different decades of historical text to see meanings shift

~30 million books, 1850-1990, Google Books data

a (.t 9ay (1900s)

flaunting sweet
tasteful cheerful
pleasant
frolicso
witty ~ gay (1950s)
pright
Jays iIsexual
gay (1990s) homosexual
leshian

b
spread
broadcast (1 8505)5 ESE%W
_ SOWS
circulated scatter
broadcast (1900s)
newspapers
television
radio
hhc broadcast (1990s)

C solemn
awful (1850s)

majestic
awe

dread ensive

gIOtJJDmy

horrible

appalliwg terrible

awful (1900s) wonderful

awful (1990s)
awfull\YeIrd

William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. Diachronic Word Embeddings Reveal
79 Statistical Laws of Semantic Change. Proceedings of ACL.
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Embeddings reflect cultural bias!

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh
Saligrama, and Adam T. Kalai. "Man is to computer

\\ . n
¢ AS k Paris: France:: To kyo - X programmer as woman is to homemaker? debiasing word
embeddings." In NeurlPS, pp. 4349-4357. 2016.

o X =Japan
* Ask “father: doctor :: mother : x”

O X = nurse

* Ask “man : computer programmer :: woman : x”

o X =homemaker

Algorithms that use embeddings as part of e.g., hiring searches for
» programmers, might lead to bias in hiring

Deakin University CRICOS Provider Code: 00113B
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Historical embedding as a tool to study cultural biases

Garg, N., Schiebinger, L., Jurafsky, D., and Zou, J. (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes.
Proceedings of the National Academy of Sciences 115(16), E3635—-E3644.

* Compute a gender or ethnic bias for each adjective: e.g., how much closer the
adjective is to "woman" synonyms than "man" synonyms, or names of particular
ethnicities

* Embeddings for competence adjective (smart, wise, brilliant, resourceful,
thoughtful, logical) are biased toward men, a bias slowly decreasing 1960-1990

*  Embeddings for dehumanizing adjectives (barbaric, monstrous, bizarre) were
biased toward Asians in the 1930s, bias decreasing over the 20" century.

* These match the results of old surveys done in the 1930s

81
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Parts of Speech

* From the earliest linguistic traditions (Yaska and Panini 5t C. BCE, Aristotle
4t C. BCE), the idea that words can be classified into grammatical categories
o part of speech, word classes, POS, POS tags

* 8 parts of speech attributed to Dionysius Thrax of Alexandria (c. 25t C. BCE):
o noun, verb, pronoun, preposition, adverb, conjunction, participle, article

o These categories are relevant for NLP today.
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Two classes of words: Open vs. Closed

* Closed class words

* Relatively fixed membership

 Usually function words: short, frequent words with grammatical function
* determiners: a, an, the
* pronouns: she, he, |

* prepositions: on, under, over, near, by, ...

* Open class words

* Usually content words: Nouns, Verbs, Adjectives, Adverbs

* Plus interjections: oh, ouch, uh-huh, yes, hello

* New nouns and verbs like iPhone or to fax

85
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Open class ("content") words

Determiners

Conjunctions
|

Pronouns

86

Nouns Verbs
Proper Common Main
Closed class ("function") ”
Auxiliary

Adjectives
Adverbs
NUMbers Interjections
... more
Prepositions
Particles ... more
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Part-of-Speech Tagging
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* Assigning a part-of-speech to each word in a text.

* Words often have more than one POS.

* book:

o VERB: (Book that flight)
o NOUN: (Hand me that book).



"Universal Dependencies" Tagset

Tag Description Example

ADJ Adjective: noun modifiers describing properties red, young, awesome
% ADV Adverb: verb modifiers of time, place, manner very, slowly, home, yesterday
O NOUN words for persons, places, things, etc. algorithm, cat, mango, beauty
az VERB words for actions and processes draw, provide, go
O  PROPN Proper noun: name of a person, organization, place, etc.. Regina, IBM, Colorado

INTJ Interjection: exclamation, greeting, yes/no response, etc. oh, um, yes, hello

ADP Adposition (Preposition/Postposition): marks a noun’s in, on, by under
" spacial, temporal, or other relation
_g AUX Auxiliary: helping verb marking tense, aspect, mood, etc., can, may, should, are
= CCONJ Coordinating Conjunction: joins two phrases/clauses and, or, but
% DET Determiner: marks noun phrase properties a, an, the, this
O NUM Numeral one, two, first, second
E PART  Particle: a preposition-like form used together with a verb  up, down, on, off, in, out, at, by
8 PRON Pronoun: a shorthand for referring to an entity or event she, who, I, others

SCONJ Subordinating Conjunction: joins a main clause with a  that, which

subordinate clause such as a sentential complement

= PUNCT Punctuation 5,0
g SYM Symbols like $ or emoji $, %

X Other asdf, qwfg

88
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Sample "Tagged" English sentences
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* There/PRO were/VERB 70/NUM children/NOUN there/ADV .[PUNC
* Preliminary/ADJ findings/NOUN were/AUX reported/VERB in/ADP

today/NOUN ’‘s/PART New/PROPN England/PROPN Journal/PROPN of/ADP
Medicine/PROPN

89
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Part-of-Speech Tagging
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* Map from sequence x,...,Xx, of words toy_,...,y, of POS tags

( Part of Speech Tagger )

| | | | |
Janet will back the bill

X X X X X

1 2 3 4 5



Why Part of Speech Tagging?
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* Can be useful for other NLP tasks
o Parsing: POS tagging can improve syntactic parsing
o MT: reordering of adjectives and nouns (say from Spanish to English)

o Sentiment or affective tasks: may want to distinguish adjectives or other POS

o Text-to-speech (how do we pronounce “lead” or "object"?)

* Or linguistic or language-analytic computational tasks

o Need to control for POS when studying linguistic change like creation of new words, or
meaning shift

o Or control for POS in measuring meaning similarity or difference

92
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How difficult is POS tagging in English?

Roughly 15% of word types are ambiguous
o Hence 85% of word types are unambiguous

o Janet is always PROPN, hesitantly is always ADV

But those 15% tend to be very common.

So ~60% of word tokens are ambiguous
E.g., back

o earnings growth took a back/AD)J seat

a small building in the back/NOUN

a clear majority of senators back/VERB the bill
enable the country to buy back/PART debt

| was twenty-one back/ADV then

O
O
O
O

93
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POS tagging performance in English

* How many tags are correct? (Tag accuracy)
o About 97%

o Hasn't changed in the last 10+ years
o HMMs, CRFs, BERT perform similarly .

o Human accuracy about the same
* But baseline is 92%!

o Baseline is performance of stupidest possible method

o "Most frequent class baseline" is an important baseline for many tasks
* Tag every word with its most frequent tag

* (and tag unknown words as nouns)
o Partly easy because

o Many words are unambiguous

9%
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Sources of information for POS tagging
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Janet will back the bill
AUX/NOUN/VERB? NOUN/VERB?

* Prior probabilities of word/tag
o "will"is usually an AUX
* Identity of neighboring words
o "the" means the next word is probably not averb
* Morphology and wordshape:
o Prefixes unable: un- — ADJ

o Suffixes importantly: -ly - ADV
o Capitalization Janet: CAP - PROPN

95
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Standard algorithms for POS tagging

Supervised Machine Learning Algorithms:

*  Hidden Markov Models

*  Conditional Random Fields (CRF)/ Maximum Entropy Markov Models (MEMM)
*  Neural sequence models (RNNs or Transformers)

* Large Language Models (like BERT), finetuned

All required a hand-labeled training set, all about equal performance (97% on English)

All make use of information sources we discussed

*  Via human created features: HMMs and CRFs
*  Viarepresentation learning: Neural LMs
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Named Entities

* Named entity, in its core usage, means anything that can be referred to with a proper
name. Most common 4 tags:
o PER (Person): "*Marie Curie”
o LOC (Location): "New York City”
o ORG (Organization): “Stanford University”
o GPE (Geo-Political Entity): "Boulder, Colorado”
* Often multi-word phrases

* But the termis also extended to things that aren't entities:

o dates, times, prices
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Named Entity tagging
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* The task of named entity recognition (NER):
o find spans of text that constitute proper names

o tag the type of the entity.

99
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NER output 5

100
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Citing high fuel prices, [prG United Airlines] said [Tpp Friday] it
has increased fares by [\jongy $6] per round trip on flights to some
cities also served by lower-cost carriers. [orG American Airlines], a
unit of [org AMR Corp.], immediately matched the move, spokesman
[per Tim Wagner] said. [prG United], a unit of [org UAL Corp.],
said the increase took effect [Tnpe Thursday] and applies to most
routes where it competes against discount carriers, such as [; oc Chicago]
to [ oc Dallas] and [; oc Denver] to [; oc San Francisco].



Why NER?
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* Sentiment analysis: consumer’s sentiment toward a particular company or
person?
* Question Answering: answer questions about an entity?

* Information Extraction: Extracting facts about entities from text.

101
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Why NER is hard

1) Segmentation
. In POS tagging, no segmentation problem since each word gets one tag.

. In NER we have to find and segment the entities!

2)  Type ambiguity

[per Washington] was born into slavery on the farm of James Burroughs.
l[org Washington] went up 2 games to 1 in the four-game series.

Blair arrived in [; oc Washington] for what may well be his last state visit.
In June, [gpg Washington] passed a primary seatbelt law.
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BIO Tagging
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* How can we turn this structured problem into a sequence problem like POS

tagging, with one label per word?

* [PER JaneVillanueva] of [ORG United], a unit of [ORG United Airlines

Holding], said the fare applies to the [LOC Chicago ] route.
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BIO Tagging
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* [PER JaneVillanueva] of [ORG United], a unit of [ORG United Airlines

Holding], said the fare applies to the [LOC Chicago ] route.

104

Now we have one tag per token!!!

ICOS Provider Code: 0o113B

Words BIO Label
B-PER
Villanueva I-PER
O
United B-ORG
Airlines [-ORG
Holding [-ORG
discussed O
O
Chicago B-LOC
O

O




BIO Tagging
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B: token that begins a span

Words BIO Label
|: tokens inside a span Jane B-PER
O: tokens outside of any span folllanueva gPER

United B-ORG

_ _ Airlines I-ORG
# of tags (where n is #entity types): Holding I-ORG
10 tag, discussed O

the O
n B tags, Chicago B-LOC

route O
nltags O

total of 2n+1

105
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BIO Tagging variants: 10 and BIOES

* [PER JaneVillanueva] of [ORG United], a unit of [ORG United Airlines

106

Holding], said the fare applies to the [LOC Chicago ] route.

Words 10 Label BIO Label BIOES Label
Jane I-PER B-PER B-PER
Villanueva I-PER I-PER E-PER
of O O O
United I-ORG B-ORG B-ORG
Airlines I-ORG I-ORG [I-ORG
Holding I-ORG I-ORG E-ORG
discussed O O O
the O O O
Chicago I-LOC B-LOC S-LOC
route O O O

O O O
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Standard algorithms for NER

* Supervised Machine Learning given a human-labeled training set of text

annotated with tags

o Hidden Markov Models

o Conditional Random Fields (CRF)/ Maximum Entropy Markov Models (MEMM)
o Neural sequence models (RNNs or Transformers)

o Large Language Models (like BERT), finetuned
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Introduction to Markov Chains

* A Markov chain models the probabilities of state sequences, each drawn

from a specific set.
* |t assumes the future state depends only on the current state, not any prior

ones.

* Markov chains are used to predict various phenomena

o E.g., modeling weather patterns or word sequences.

109
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Markov Chain Representation

O=q192...9n a set of N states

A=anai2...ay1...ayy a transition probability matrix A, each a;; represent-
ing the probability of moving from state i to state j, s.t.
n _ g
j=1a;‘ j= 1 Vi
=T, M,.... TN an initial probability distribution over states. 7; is the
probability that the Markov chain will start in state i.
o  — q A Markov chain for weather (a) and one for words (b), showing states and
Some ?tates LI have Ef 0’ i that they cannot transitions. A start distribution 7 is required; setting & = [0.1, 0.7, 0.2] for (a) would mean a
be lmtlal states. AISO, ?_1 = 1 probability 0.7 of starting in state 2 (cold), probability 0.1 of starting in state 1 (hot), etc.

* Markov Assumption:
o Formally stated as: P(q;=alq,...q;_, ) =P(qg,=alq,_,) implying that when predicting the

future, only the present state matters

110
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The Hidden Markov Model
DEAKIN

UNIVERSITY

* A Markov chain computes probabilities for sequences of observable events.

* But often, the events of interest are hidden.

o Example: Part-of-speech tags in text—hidden because we don’t observe them directly.

* Solution: Hidden Markov Model (HMM) handles both observed and hidden

events.

o HMMs augment Markov chains

111



DEAKIN

UNIVERSITY

Probabilistic Sequence Modeling with HMMs

* A Hidden Markov Models (HMM) is a probabilistic sequence model that, given a sequence
of units (words, letters, morphemes, sentences, etc.), computes a probability distribution

over possible sequences of labels.

o HMMs determine the likelihood of different label sequences and select the most probable sequence
based on the observed data.

o HMM is based on augmenting the Markov chain

112
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Input and Assumptions

* Input (O): Sequence of observations (0,, 0,, ..., 07) drawn from vocabulary V.

* Assumptions of first-order HMM:

o Markov Assumption:
o Probability of state g; depends only on the previous state (q,.,).
* P(qilq;---q:-.) =P(qlq;.)
o Output Independence:

o Probability of observation o, depends only on the state that produced it g;

¢ P(Oi |q11'"qi l--'qu 1011---loi I"'IOT) = P(Oi |q|)

113
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Components of an HMM Tagger

* An HMM tagger consists of two main components:
o Matrix A which represents the tag transition.

o Matrix B which represents emission probabilities.

B,
P("aardvark" | MD)
P(“will" | MD)
PCthe"IMD) [$ - --—----- :
E(.back' | MD) P("aardv:m' | NN)
P("zebra" | MD) i;(“wilr (NN)
. P("the" | NN)
P("aard\:atlc' | VB) fCRACk LNN)
P(will" | VB) P("zebra" | NN)
P("the" | VB)
115 P(“back” | VB)
Deckin Universiy CRICOSPrvider ode: cors3 B(zebra” | VB)




The A Matrix - Transition Probabilities
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* The A matrix encapsulates the tag transition probabilities, P(t;|t._,), which express how

likely a tag follows its predecessor.

o Example:
o The modal verb “"will” commonly precedes the base form of a verb (VB), as in “will race”, leading to a high transition
probability.

o These probabilities are derived using maximum MLE by counting tag occurrences in a labeled corpus.

* Calculating Transition Probabilities:

o Inthe WSJ corpus example, the modal verb tag (MD) is observed 13,124 times.
o Out of these, MD transitions to a base verb (VB) 10,471 times.

o Using MLE, we estimate P(VB|MD) = C(MD, VB) [ C((MD) = 10,471 [ 13,124 = 0.80.

116

Deakin University CRICOS Provider Code: 00113B



A
DEAKIN

UNIVERSITY

The B Matrix - Emission Probabilities

* The B matrix contains emission probabilities, P(w;|t), which quantify the
likelihood of a word being tagged with a specific tag.

* Emission Probability Calculation
o To calculate emission probabilities, we count how often a word occurs with a particular

tagina corpus.

o Forinstance, the MD tag associated with the word 'will' occurs 4,046 times in the WSJ

Corpus.

o Hence, P(will|MD) is calculated as C(MD, will) | C(MD) = 4,046 [ 13,124 = 0.31.
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Components of HMM

0=q192...9N
A=ai...aij...anNN

B = bf(Or)

T=7mT,T,...,TNy
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a set of N states

a transition probability matrix A, each a;; representing the probability
of moving from state i to state j, s.t. ZL aij=1 Vi

a sequence of observation likelihoods, also called emission probabili-
ties, each expressing the probability of an observation o, (drawn from a
vocabulary V = vy,vs,...,vy) being generated from a state g;

an initial probability distribution over states. 7; is the probability that
the Markov chain will start in state i. Some states j may have 7; = 0,
meaning that they cannot be initial states. Also, > ., ; = 1
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Decoding with Hidden Markov Models

* Decoding is the process of determining the most probable sequence of

hidden states (tags) based on observed data.

o Given a sequence of observationsO =o0,, 0., ..., 07, decoding aims to find the most
probable sequence of statesQ =q.q, ... qy.

o The inputisanHMM A = (A, B), with A being the transition probabilities and B the
emission probabilities.

f1., = argmax P(ty ...ty |w1 ... wp)
I1...In
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Decoding with Hidden Markov Models (i)

fl:n — al‘gmaxP(tl . _tn |W1 .. Wn) MAP is “maximum a posteriori”

[... Iy = most likely sequence
... — argmax P(Wl . Wp |t1 . tn)P(tl .. -tn) S
1...In P(W] .o .Wn)

fi.n = argmax P(wy ... wylty...t,)P(t; ...t,) | Dropeingthe

f...In denominator
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Decoding with Hidden Markov Models (ii)

"Likelihood™" "Prior"
f1., = argmaxP(wy...wplt;...1,)P(t; .. .1,)
31... tn
* HMM taggers make two further simplifying assumptions.

o The probability of a word appearing depends only on its own tag and is independent of neighboring

words and tags:

n
Pwy...wylt;...ty) = HP(W;;|I;-)
i=1

o The second assumption, the bigram assumption, is that the probability of a tagis dependent only on the

previous tag, rather than the entire tag sequence;
n
P(Il .. .fn) ~ HP(I;#|I;'_1)
i=1
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Decoding with Hidden Markov Models (iii)
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* Plugging the simplifying assumptions results in the following equation for

the most probable tag sequence from a bigram tagger:

. emission transition

fln = argmax P(fy ...ty |wy ... wy) & argmaxH P(wi|t;) P(ti|ti—1)
I ... Iy f1...In i—1

* The two parts correspond neatly to the B emission probability and A

transition probability that we defined previously!
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Computing the most probable sequence of tags

* A brute force approach to identify the most probable

sequence of tags faces exponential complexity
o This method is impractical for large datasets or real-time

applications.

* Solution: The Viterbi algorithm 1967

o Leverages dynamic programming, streamlining the process by
breaking the problem into manageable sub-problems

o This approach significantly reduces computational demands
and enhances processing speed, making it viable for complex

tasks in real-world scenarios
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The Viterbi Algorithm (i)

* The decoding algorithm for HMMs is the Viterbi algorithm
o As an instance of dynamic programming, Viterbi resembles the dynamic programming minimum edit distance algorithm
* The Viterbi algorithm first sets up a probability matrix or lattice:

o Columns as observables (words of a sentence in the same sequence as in sentence)

o Rows as hidden states (all possible POS Tags are known)

tag the sentence
Janet will back the bill
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The Viterbi Algorithm (i)

* Each cell of the matrix is represented by V.(j) (Viterbi value for t: column, j: row) having the probability that the HMM is in state |

(present POSTag) after seeing the first t observations (past words for which matrix (cell) values has been calculated) and passing

through the most probable state sequence (previous POS Tag) q,.....q;_,
* Computed by recursively taking the most probable path that could lead us to this cell

ve(j) = maxw,—p(i)a;;\b
Pl ¥
vi—1(i) the previous Viterbi path probability from the previous time step
ajj the transition probability from previous state g; to current state g;
bj(o;) the state observation likelihood of the observation symbol o; given
the current state j
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The Viterbi Algorithm (i)
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Each cell of the matrix is represented by V.(j) (Viterbi value for t: column, j: row) having the probability that the HMM is in state j
(present POSTag) after seeing the first t observations (past words for which matrix (cell) values has been calculated) and passing

through the most probable state sequence (previous POS Tag) q,.....q;_,

A sketch of the matrix for Janet will back the bill, showing
the possible tags (q.) for each word and highlighting the

path corresponding to the correct tag sequence through
the hidden states

States (parts of speech) which have a zero probability of
generating a particular word according to the B matrix
(such as the probability that a determiner DT will be
realized as Janet) are greyed out

NNP
Sdidpd
Janet will back
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Working Example (i)

* Janet will back the bill — Janet/NNP will/MD back/VB the/DT bill/NN

The A transition probabilities
P(t|t_,) computed from the WSJ
corpus without smoothing

Observation likelihoods B computed

from the WSJ corpus without
smoothing, simplified slightly
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NNP MD VB JJ NN RB DT
<s> 0.2767 0.0006 0.0031 0.0453 0.0449 0.0510 0.2026
NNP 0.3777 0.0110 0.0009 0.0084 0.0584 0.0090 0.0025
MD 0.0008 0.0002 0.7968 0.0005 0.0008 0.1698 0.0041
VB 0.0322  0.0005 0.0050 0.0837 0.0615 0.0514 0.2231
JJ 0.0366 0.0004 0.0001 0.0733 0.4509 0.0036 0.0036
NN 0.0096 0.0176 0.0014 0.0086 0.1216 0.0177 0.0068
RB 0.0068 0.0102 0.1011 0.1012 0.0120 0.0728 0.0479
DT 0.1147 0.0021 0.0002 0.2157 0.4744 0.0102 0.0017
Janet will back the bill
NNP 0.000032 0 0 0.000048 0
MD 0 0.308431 0 0 0
VB 0 0.000028 0.000672 0 0.000028
JJ 0 0 0.000340 0 0
NN 0 0.000200 0.000223 0 0.002337
RB 0 0 0.010446 0O 0
DT 0 0 0 0.506099 0
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Working Example (ii)

waljn}-
max * 0104
V.
JJ NN RB DT d5 NN r.{f:
0.0453 0.0449 0.0510 0.2026
0.0084 0.0584 0.0090 0.0025
0.0005 0.0008 0.1698 0.0041 vald)=
0.0837 0.0615 0.0514 0.2231 max * 00034

0.0733 04509 0.0036 0.0036 . -
0.0086 0.1216 0.0177 0.0068 o f | AR

0.1012 0.0120 0.0728 0.0479 max * 00067
0.2157 0.4744 0.0102 0.0017
J will back the bill
NNP @o 0 0.000048 0
MD 0 0.308431 0 0 0
VB 0 0.000028 0.000672 0 0.000028
3 0 0 0.000340 0 0
NN 0 0.000200 0.000223 0 0.002337
RB 0 0 0.010446 0 0 P, A
DT 0 0 0 0.506099 0 o R R
130 back the | bill |
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Evaluation Metrics for Named Entity Recognition (NER)

* NER Evaluation Basics:
o Unlike POS tagging, evaluated on accuracy, NER uses recall, precision, and F1 score.
o Recall measures correctly identified entities against all actual entities.
o Precision counts correct labels against all labeling attempts.

o The F1 score provides a balance between precision and recall, serving as a single metric for accuracy.

* Challenges in NER:

o NER systems treat entities as single units for evaluation, leading to challenges not seen in POS tagging.
o The system’s ability to correctly identify entire entities, such as 'Jane Villanueva', impacts evaluation
outcomes.

o Mismatches in entity recognition across training and test data can skew results.

132

Deakin University CRICOS Provider Code: 00113B



	Main
	Slide 1: SIT330-770: Natural Language Processing

	Week 5.1 - Word Meaning
	Slide 2: SIT330-770: Natural Language Processing
	Slide 3: What do words mean?
	Slide 4: Desiderata
	Slide 5: Lemmas and senses
	Slide 6: Relations between senses: Synonymy
	Slide 7: Relations between senses: Synonymy
	Slide 8: Relation: Synonymy?
	Slide 9: The Linguistic Principle of Contrast
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